本文介绍了pytorch 把MNIST数据集转换成图片和txt的方法,分享给大家,具体如下:

1.下载Mnist 数据集

import os
# third-party library
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt 
# torch.manual_seed(1)  # reproducible
DOWNLOAD_MNIST = False
 
# Mnist digits dataset
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
  # not mnist dir or mnist is empyt dir
  DOWNLOAD_MNIST = True
 
train_data = torchvision.datasets.MNIST(
  root='./mnist/',
  train=True,                   # this is training data
  transform=torchvision.transforms.ToTensor(),  # Converts a PIL.Image or numpy.ndarray to
                          # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
  download=DOWNLOAD_MNIST,
)

下载下来的其实可以直接用了,但是我们这边想把它们转换成图片和txt,这样好看些,为后面用自己的图片和txt作为准备

2. 保存为图片和txt

import os
from skimage import io
import torchvision.datasets.mnist as mnist
import numpy 
root = "./mnist/raw/"
train_set = (
  mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
  mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
)
 
test_set = (
  mnist.read_image_file(os.path.join(root,'t10k-images-idx3-ubyte')),
  mnist.read_label_file(os.path.join(root,'t10k-labels-idx1-ubyte'))
)
 
print("train set:", train_set[0].size())
print("test set:", test_set[0].size())
 
def convert_to_img(train=True):
  if(train):
    f = open(root + 'train.txt', 'w')
    data_path = root + '/train/'
    if(not os.path.exists(data_path)):
      os.makedirs(data_path)
    for i, (img, label) in enumerate(zip(train_set[0], train_set[1])):
      img_path = data_path + str(i) + '.jpg'
      io.imsave(img_path, img.numpy())
      int_label = str(label).replace('tensor(', '')
      int_label = int_label.replace(')', '')
      f.write(img_path + ' ' + str(int_label) + '\n')
    f.close()
  else:
    f = open(root + 'test.txt', 'w')
    data_path = root + '/test/'
    if (not os.path.exists(data_path)):
      os.makedirs(data_path)
    for i, (img, label) in enumerate(zip(test_set[0], test_set[1])):
      img_path = data_path + str(i) + '.jpg'
      io.imsave(img_path, img.numpy())
      int_label = str(label).replace('tensor(', '')
      int_label = int_label.replace(')', '')
      f.write(img_path + ' ' + str(int_label) + '\n')
    f.close()
 
convert_to_img(True)
convert_to_img(False)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
pytorch,MNIST数据集,pytorch,MNIST数据集转换

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
桃源资源网 Design By www.nqtax.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。