使用model.named_parameters()可以轻松搞定,
model.cuda() # ######################################## Froze some layers to fine-turn the model ######################## for name, param in model.named_parameters(): # 带有参数名的模型的各个层包含的参数遍历 if 'out' or 'merge' or 'before_regress' in name: # 判断参数名字符串中是否包含某些关键字 continue param.requires_grad = False # ############################################################################################################# optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=opt.learning_rate * args.world_size, momentum=0.9, weight_decay=5e-4)
以上这篇Pytorch根据layers的name冻结训练方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
桃源资源网 Design By www.nqtax.com
暂无“Pytorch根据layers的name冻结训练方式”评论...