我就废话不多说了,直接上代码吧!
import tensorflow as tf w1 = tf.Variable([[1,2]]) w2 = tf.Variable([[3,4]]) res = tf.matmul(w1, [[2],[1]]) grads = tf.gradients(res,[w1]) with tf.Session() as sess: tf.global_variables_initializer().run() print sess.run(res) print sess.run(grads)
输出结果为:
[[4]] [array([[2, 1]], dtype=int32)]
可以这样看res与w1有关,w1的参数设为[a1,a2],则:
2*a1 + a2 = res
所以res对a1,a2求导可得 [[2,1]]为w1对应的梯度信息。
import tensorflow as tf def gradient_clip(gradients, max_gradient_norm): """Clipping gradients of a model.""" clipped_gradients, gradient_norm = tf.clip_by_global_norm( gradients, max_gradient_norm) gradient_norm_summary = [tf.summary.scalar("grad_norm", gradient_norm)] gradient_norm_summary.append( tf.summary.scalar("clipped_gradient", tf.global_norm(clipped_gradients))) return clipped_gradients w1 = tf.Variable([[3.0,2.0]]) # w2 = tf.Variable([[3,4]]) params = tf.trainable_variables() res = tf.matmul(w1, [[3.0],[1.]]) opt = tf.train.GradientDescentOptimizer(1.0) grads = tf.gradients(res,[w1]) clipped_gradients = gradient_clip(grads,2.0) global_step = tf.Variable(0, name='global_step', trainable=False) #update = opt.apply_gradients(zip(clipped_gradients,params), global_step=global_step) with tf.Session() as sess: tf.global_variables_initializer().run() print sess.run(res) print sess.run(grads) print sess.run(clipped_gradients)
以上这篇TensorFlow梯度求解tf.gradients实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
桃源资源网 Design By www.nqtax.com
暂无“TensorFlow梯度求解tf.gradients实例”评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。